Self-branching in GaN Nanowires Induced by a Novel Vapor-Liquid-Solid Mechanism

نویسندگان

  • Chang-Yong Nam
  • Douglas Tham
  • John E. Fischer
چکیده

Nanowires have great potential as building blocks for nanoscale electrical and optoelectronic devices. The difficulty in achieving functional and hierarchical nanowire structures poses an obstacle to realization of practical applications. While post-growth techniques such as fluidic alignment might be one solution, selfassembled structures during growth such as branches are promising for functional nanowire junction formation. In this study, we report vapor-liquid-solid (VLS) self-branching of GaN nanowires during AuPdcatalyzed chemical vapor deposition (CVD). This is distinct from branches grown by sequential catalyst seeding or vapor-solid (VS) mode. We present evidence for a VLS growth mechanism of GaN nanowires different from the well-established VLS growth of elemental wires. Here, Ga solubility in AuPd catalyst is limitless as suggested by a hypothetical pseudo-binary phase diagram, and the direct reaction between NH3 vapor and Ga in the liquid catalyst induce the nucleation and growth. The self-branching can be explained in the context of the proposed VLS scheme and migration of Ga-enriched AuPd liquid on Ga-stabilized polar surface of mother nanowires. This work is supported by DOE Grant No. DE-FG02-98ER45701.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of Serrated GaN Nanowires for Hydrogen Gas Sensors Applications by Plasma-Assisted Vapor Phase Deposition Method

Nowadays, the semiconductor nanowires (NWs) typically used in hydrogen gas sensors. Gallium nitride (GaN) with a wide band gap of 3.4 eV, is one of the best semiconductors for this function. NWs surface roughness have important role in gas sensors performance. In this research, GaN NWs have been synthesized on Si substrate by plasma-assisted vapor phase deposition at different deposition time, ...

متن کامل

GaN Nanowires on N-Polar GaN

In this work, the position-controlled growth of GaN nanowires on sapphire wafers and on N-polar GaN templates is presented using selective area vapor-liquid-solid growth in a metalorganic vapor phase reactor. Misoriented sapphire wafers and TMIn acting as surfactant are applied in order to achieve N-polar GaN buffer layers with high crystal and surface quality, suitable for a subsequent nano-pa...

متن کامل

Fabrication of vertical GaN/InGaN heterostructure nanowires using Ni-Au bi-metal catalysts

We have fabricated the vertically aligned coaxial or longitudinal heterostructure GaN/InGaN nanowires. The GaN nanowires are first vertically grown by vapor-liquid-solid mechanism using Au/Ni bi-metal catalysts. The GaN nanowires are single crystal grown in the [0001] direction, with a length and diameter of 1 to 10 μm and 100 nm, respectively. The vertical GaN/InGaN coaxial heterostructure nan...

متن کامل

Gold catalytic Growth of Germanium Nanowires by chemical vapour deposition method

Germanium nanowires (GeNWs) were synthesized using chemical vapor deposition (CVD) based on vapor–liquid–solid (VLS) mechanism with Au nanoparticles as catalyst and germanium tetrachloride (GeCl4) as a precursor of germanium. Au catalysts were deposited on silicon wafer as a thin film, firstly by sputtering technique and secondly by submerging the silicon substrates in Au colloidal s...

متن کامل

GaN nanowire and Ga2O3 nanowire and nanoribbon growth from ion implanted iron catalyst

The authors experimentally demonstrate a simple and efficient approach for nucleating the catalytic chemical vapor deposition CVD growth of GaN nanowires, Ga2O3 nanowires, and Ga2O3 nanoribbons by using ion implantation of Fe+ into thermally grown SiO2 layers and subsequent annealing to form the catalyst nanoparticles. This work shows that ion implantation can be used as a versatile method to c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016